Low Complexity Damped Gauss-Newton Algorithms for CANDECOMP/PARAFAC

نویسندگان

  • Anh Huy Phan
  • Petr Tichavský
  • Andrzej Cichocki
چکیده

The damped Gauss-Newton (dGN) algorithm for CANDECOMP/PARAFAC (CP) decomposition can handle the challenges of collinearity of factors and different magnitudes of factors; nevertheless, for factorization of an N-D tensor of size I1 × · · · × IN with rank R, the algorithm is computationally demanding due to construction of large approximate Hessian of size (RT × RT ) and its inversion where T = n In. In this paper, we propose a fast implementation of the dGN algorithm which is based on novel expressions of the inverse approximate Hessian in block form. The new implementation has lower computational complexity, besides computation of the gradient (this part is common to both methods), requiring the inversion of a matrix of size NR × NR, which is much smaller than the whole approximate Hessian, if T ≫ NR. In addition, the implementation has lower memory requirements, because neither the Hessian nor its inverse never need to be stored in their entirety. A variant of the algorithm working with complex valued data is proposed as well. Complexity and performance of the proposed algorithm is compared with those of dGN and ALS with line search on examples of difficult benchmark tensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition

This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor o...

متن کامل

On Fast Computation of Gradients for CANDECOMP/PARAFAC Algorithms

Product between mode-n unfolding Y(n) of an N-D tensor Y and Khatri-Rao products of (N − 1) factor matrices A(m), m = 1, . . . , n − 1, n + 1, . . . , N exists in algorithms for CANDECOMP/PARAFAC (CP). If Y is an error tensor of a tensor approximation, this product is the gradient of a cost function with respect to factors, and has the largest workload in most CP algorithms. In this paper, a fa...

متن کامل

An Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors

The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Oft...

متن کامل

Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting

CANDECOMP/PARAFAC (CPD) approximates multiway data by sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of the rank-1 components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor...

متن کامل

A Damped Guass-Newton Method for the Generalized Linear Complementarity Problem

In this paper, we consider the generalized linear complementarity problem (GLCP) over an affine subspace. To this end, we first reformulate the GLCP as a system of nonsmooth equation via the Fischer function. Based on this reformulation, the famous damped Gauss-Newton (DGN) algorithm is employed for obtaining its solution, and we show that the DGN algorithm is quadratically convergent without n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013